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Chapter 1

Prelude

Mathematics and music are just two of the many ways we respond to the world around
us. Mathematics describes quantity and space, while music involves the appreciation
of sound. Both math and music are intentional human creations. Like mathematicians,
musicians describe concepts like “chords” that cannot be touched or seen. Like musicians,
mathematicians speak of “beauty” or “elegance”—in their case, of a particular equation,
theorem, or proof. Both disciplines rely on precise notation.

What is music?

What is the difference between “sound” and “music?” We can probably agree that the styles
of popular and classical music that we make or buy are “music.” However, it is difϐicult
to deϐine “music” in general. Some composers, such as John Cage (1912-1992), have
deliberately challenged our notions of what music is.
Although there is no universally accepted deϐinition of music, I like the French composer
Edgar Varese’s description that “music is organized sound.” This organization can be seen
on many different levels, from the sounds that musical instruments make to the way a
composer structures a piece. I would add that music exists in time and that music is a form
of artistic expression. My favorite deϐinition is

Music is the art of organizing sound in time.

Exercise 1.1. Rank these sounds in order from “most musical” to “least musical.” (a) traditional
Ghanaian drumming, (b) an ambulance siren, (c) raindrops on a tin roof, (d) the sound of a vacuum
cleaner, (e) silence, (f) static, (g) a pop song, (h) birdsong, (i) a dog’s bark, (j) freestyle rap, (k) the
ticking of a clock, (i) Stockhausen’s “Helicopter Quartet.” Clearly, there are no right or wrong answers,
but pay attention to your reasons for ranking one sound above another. Did you rate the sounds
produced by humans higher? Does the presence or absence of a tone you can hum to or a rhythm
you can tap to inϐluence your decision? Which distinctions are most difϐicult to make? Are your
judgments inϐluenced by Western cultural norms?

1–1
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Challenging deϐinitions of music. Throughout history, mathematicians have continually
expanded the deϐinitions of fundamental concepts like “number” and “space.” For example,
zero wasn’t recognized as a number until the middle ages; the idea of four-dimensional
space is relatively recent. Many composers have done the same thing. I would like to start
by questioning our ideas about what music is and ϐinding the widest possible “universe”
of musical expression. In class, we watched a number of videos that challenge what’s
commonly called “music.”

• A found sound is a sound that is in the world around you but not intended to be
“music” by whoever or whatever made it. Some musicians record found sounds and
incorporate them into their own compositions. Music can also be made with found
objects that are not intended to be musical instruments.
The Everyday Ensemble’s “Found Sound Composition” uses both found sounds and
found objects. It begins with a ticking clock. The musicians play found
objects—bouncing balls, rustling bags—to interlock with the rhythm of the clock. At
what point did you realize that the clock is “music,” rather than, say, the beginning of a
movie? How does organization play a role in our perception of music?

• In English, musical compositions are often referred to as “pieces,” implying that music
comes in ϐinite, contained units. The Ghanian drummers’ music challenges the
expectation that music has a beginning and an end. In what way is time organized (or
not organized) by their drumming?

• Silence is a part of music—musicians even have symbols for silences, called rests. Can
silence be music by itself? Watch the video of John Cage’s 4’33” (1952).
Cage focused on the listener as the creator of music. That is, the listener is the
artist—the person who makes something music rather than sound. His composition
4’33” throws background sounds into the foreground. He wrote, “If music is the
“enjoyment” of “sound”, then it must center on not just the side making the sound, but
the side listening. In fact, really it is listening that is music. As we savor the sound of
rain, music is being created within us” (from “In this time”). Do you agree? Try picking
a natural sound and convince yourself that it is musical.

• Is there a difference between poetry and music? Does freestyle rap without backing
beats count as music? What about rap in sign language? Is there a way that dancing
can be music?

• Algorithmic music is produced when musical notes are chosen by some mathematical
set of instructions (algorithm). For example, the Online Encyclopedia of Integer
Sequences has a “music” feature. It maps numbers to piano keys and plays the notes
corresponding to numbers in a mathematical sequence. We listened to sequences
A000045 (the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, …) and A005843 (the even
numbers). Are these sounds “music?” What about sounds made from random
sequences of numbers? (In general, music made by some random process is called
aleatory music.) Change ringing is an algorithmic method of ringing bells that has been
practiced in England for over 500 years. Do you ϐind it musical?

• When rap music ϐirst reached a wide audience, some people who didn’t like it
complained that it “isn’t music.” Should our aesthetic judgements—what we
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like—have any relevance in the deϐinition of music? What about cultural expectations?
Does anyone have the “right” to decide what is music?

• Sonic weapons are painfully loud sounds, including tones, recorded songs, and
distressing sounds such as crying babies, that are used by the military or police for
crowd control or as a form of torture. They may cause permanent hearing damage.
Are sonic weapons music?

• Does my deϐinition of music as “the art of organizing sound in time” include things that
you do not consider “music?” If so, give examples.

Sound and recording. Sounds are produced by rapid vibrations in the air that are
detectable by the ears of humans or other animals. In music, notes have volume (loudness or
softness) and may have pitch (highness or lowness), while rests are silences. Both notes and
rests have a beginning (onset) and end (offset); the difference in time between their onset
and offset is called their duration.
When you record a sound digitally, the picture of the sound that you see is called awaveform.
It is a visual representation of the vibration of air molecules that produced the sound. The
horizontal axis represents time, which is usually measured in seconds.
The vertical axis shows you displacement—how the air molecules are moving back and forth.
In reality, molecules are moving in three dimensions, but this two-dimensional picture is
good enough in most situations.
Waveforms give us useful information both on a “macro” and “micro” level. The rough shape
of the waveform when you zoom out shows how the loudness of the sound changes. It often
looks like a series of blobs, with fat blobs for loud sounds; we perceive stronger vibrations
as louder. If a deϐinite onset and offset can be detected, you can ϐind the duration of a sound
by subtracting the onset from the offset.
You can also zoom in on the waveform. For many musical instruments, the zoomed-in
waveform has a pattern that repeats hundreds or thousands of times per second. These
patterns give information on the pitch and timbre (TAM-ber) of the sound. Timbre is difϐicult
to describe, but, loosely, it’s the quality of the sound that allows you to distinguish between
different instruments, voices, and other sounds.

Exercise 1.2. Install software that allows you to record and analyze sound. I recommend Audacity
for a computer, TwistedWave for iPhone, and MixPad for Android. Audacity has been installed on
many computers on campus. Make ϐive-second recordings of yourself talking, humming, clapping,
and saying “shh.” Comment on the differences between the pattern (or lack of pattern) in their
waveforms, both zoomed out and zoomed in.

Solution1.2. Figure 1.1 shows a sample response. Each sound clip has a duration of 5 seconds. The
top image shows the overall shape of the waveforms and gives you information about the rhythm of
the sound. We can see that the word “music” has a duration of about a quarter second. Clapping
has a repeating pattern representing the rhythm of the claps, which occur roughly at intervals of
0.4 seconds. Zooming in on the waveform gives information about the “quality” (timbre) of the sound.
Only humming shows a repeating pattern. Notice that the speech transitions between a random
pattern coinciding with the “s” in music and a repeating pattern coinciding with the “i.” In speech,
vowels look more like humming than consonants such as “s” do.
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Figure 1.1: In the top image, the ϔirst waveform is me speaking the sentence “Music is the art of
organizing sound in time.” The others are, in order, humming, clapping, and saying “shh.” The
bottom image shows what they look like around the 0.7 second mark.

Music notation. Some musical cultures use notation use music notation, which is a
symbolic language used to communicate instructions to musicians. There are many different
systems of notation used throughout the world. The symbols used in Western common
practice music—the music often called “Classical”—are probably familiar to you, even if you
don’t know how to interpret, or “read,” them. Figure 1.2 shows an example of amusical score.
We will learn a few ways of notating music in this class.

What is math?

The philosopher Michael Resnik (1981) called mathematics “a science of pattern.”
Mathematics precisely describes structure, both in the physical world and in the abstract. It
has been part of a liberal arts education from the beginning. It trains us in using abstraction
and in forming logical arguments. Though few people are professional mathematicians, all
humans aremathematical thinkers: we engage informally in ideas of quantity, pattern, space,
and logic. Music theory, the study of structure in music, is a type of mathematical thinking.
The distinction between mathematical science and mathematical thinking is in the use of
precision and rigor. Mathematical science is precise and logical. It’s what you learn in
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Symphony No. 5 in C Minor, Op. 67 

1

Figure 1.2: The ϔirst page of the score, or set of notated musical instructions, for Beethoven’s Fifth
Symphony (1808). As in the Audacity screenshot, the horizontal direction represents time, moving
from left to right. Each ϔive-line staff is labeled with the name of a different instrument. Symbols
with oval “heads” such as ˘ “ and ˇ “ ˇ “

==

ˇ “

==

are notes, while the symbols <,
>
, and

?
indicate rests. The

position of notes in the staff indicates their pitch, with higher notes on top. The instruments play
simultaneously, so that a vertical “slice” of the score shows everything that is happening at a
particular moment in time. Written music like this is also called sheet music. We’ll watch a video
that synchronizes the score and music.
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math class and what mathematicians do for a living. Proofs need to be so logically rigorous
that they can withstand all potential challenges. In contrast, mathematical thinking is
perception or reasoning that involves number, geometry, logical reasoning, etc. It doesn’t
have to be formal, and you don’t have to have a precise answer. Reading amap and estimating
a tip are examples of mathematical thinking, but not mathematical science.

How to think like a mathematician

You may be familiar with the puzzle sudoku. The object of the puzzle is to ϐill a 9× 9 grid of
squares with the digits 1 through 9 so that each row, each column, and each 3× 3 sub-square
contains all nine digits. Some of the numbers are ϐilled in already, and you have to ϐill in the
rest.
Sometimes sudoku is advertised “no math involved!” However, there is plenty of math
involved—namely, logic, which is a branch of mathematics—although there is no arithmetic.
In fact, there is no need to use numbers: any set of nine different symbols would do just as
well.
Solving a sudoku puzzle doesn’t rise to the level of mathematical science, but it is an example
of mathematical thinking. However, many mathematicians have been inspired by the puzzle
to ask “scientiϐic” questions. You can even ϐind research papers on the game published in
mathematical journals.
Here are some questions about sudoku, roughly organized from the least mathematical to
the most mathematical. What does this say about how mathematicians think?

1. What is the solution to this puzzle?

2. How can you create a new sudoku puzzle?

3. Are there variations of sudoku? Let’s solve one.

4. Could you make sudoku games of different sizes, like 4× 4 grids?

5. How can you change the rules or add new rules to create your own variations on
sudoku?

6. Does every puzzle have a solution? If not, create a puzzle with no solution.

7. Do some puzzles have more than one solution? If so, create a puzzle with two
solutions.

8. What is a general strategy for solving sudoku puzzles? Prove that your strategy will
always work.

9. Which strategy is the “fastest” in that a computer will be able to solve the puzzle in the
shortest possible time? Prove that your strategy is the fastest possible.

10. What is a general strategy for creating puzzles? Prove that your strategy results in a
puzzle with a unique solution.
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Figure 1.3: Left: a sudoku game to solve. Right: a sudoku game with the minimal number of clues,
which has proven to be 17.

11. How many different grids are solutions to sudoku puzzles? Do some have interesting
features? (Look up “automorphic sudoku.”)

12. If you exchange all the “1”s and “2”s in a puzzle, or replace the numbers with letters,
you get more or less the same puzzle. In what other ways may two solution grids be
essentially the same, or “equivalent”? If you don’t count these separately, how many
different grids are there?

13. Suppose a “transformation” is an action that turns a puzzle into an equivalent puzzle.
What is the structure of the set of transformations of all possible puzzles?

14. What is the minimal number of clues that may be given so that a puzzle has a unique
solution?

15. How do all these questions generalize to puzzles with n× n grids, where n is a positive
integer?

Exercise 1.3. How do mathematicians think? Describe how the questions changed from the ϐirst to
last.

Exercise 1.4. Solve the puzzles in Figure 1.3.

Exercise 1.5. Make a sudoku with no solution and make one with multiple solutions.

Exercise 1.6. Find a question that mathematicians have asked about sudoku, or ask one yourself.



1–8 CHAPTER 1. PRELUDE

Mathematical terminology

Here are some of the basic terms that mathematicians use to describe what they do.

Deϐinition. A deϔinition is a precise description of a mathematical term. Here are a few
useful deϐinitions that you should know:

• The natural numbers are the numbers 1, 2, 3, 4, . . ..
• The integers are the numbers . . .− 3,−2,−1, 0, 1, 2, 3, . . ..
• The real numbers are all the numbers on the number line.
• For integers a and b, we say that a divides b if a is nonzero and b equals a times some

integer k (that is, b = ak).
• An even number is a number that is divisible by 2. In other words, it equals 2k, where k

is an integer.

Proposition. A proposition is a statement that is either true or false. “Two is an even
number” and “3+2 = 5” are true propositions. “Two is an odd number” is a false proposition.
“Figure out whether two is even,” “5 + x = 2,” and “Is two an even number?” are not
propositions. “This sentence is false” sounds like it might be a proposition, but it’s neither
true nor false. It is an example of a paradox.

Axiom. In order to do any useful mathematics, we all have to agree that certain statements,
called axioms, are true without proof. For example, the Peano axioms are needed to
establish the deϐinition of integers and the rules of arithmetic. The Parallel postulate in
geometry states that parallel lines never intersect, where two lines are parallel if they are
perpendicular to the same line. Surprisingly, it is not possible to use the basic deϐinitions of
geometry to prove that parallel lines do not intersect. In fact, the parallel postulate must be
accepted as true in Euclidean geometry, which is the geometry of the plane that you learned
in high school.¹

Theorem. A theorem is a proposition pertaining to mathematics or logic that has been
proven to be true.²

Proof. A proof is a rigorous, logical argument, written in complete sentences, that
demonstrates that a theorem or proposition is true. Proofs build on deϐinitions, axioms,
demonstrably true propositions, and other theorems.
The proposition “the sum of two even numbers is an even number” can be proven using a
logical argument, assuming that the normal rules of arithmetic are true and following from
the deϐinition of an even number. Here is the proof. The box at the end of the paragraph
marks the end of the proof.

¹Parallel lines do intersect on the globe, and this type of geometry is called spherical geometry.
²The distinction between “theorems” and “true propositions” is not hard-and-fast. Theorems are typically

more important, useful, universal, or just more difϐicult to prove than ordinary true propositions.
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Proposition: The sum of any two even numbers is an even number.
Proof. Suppose x and y are even numbers. The deϐinition of “even number”
means x and y are divisible by 2, so there are integers k and l where x = 2k and
y = 2l. By the rules of addition and multiplication, x+ y = 2k + 2l = 2(k + l),
which is an even number because k + l is an integer. 2

Notice that this proof implicitly relies on the Peano axioms, because we need the rules of
arithmetic and the deϐinition of integers to complete the proof.

Conjecture. A conjecture is a proposition pertaining to mathematics or logic that is made
without proof. Conjectures are usually “educated guesses” based on some pattern that has
been observed. “The sum of two integers is greater than either integer” is a conjecture.
Although this conjecture is easily disproven, there exist some famous conjectures that
mathematicians have never been able to prove true or false.

Example. An example is an illustration of a proposition in a particular instance. Unless you
are able to demonstrate that all possible examples of a proposition are true, examples do
NOT prove the proposition.

Universal proposition. A universal proposition is one that is asserted for inϐinitely many
examples. The universal proposition “the sum of any two even numbers is an even number”
is illustrated by examples such as 2 + 4 = 6 and−4 + 4 = 0. However, examples can’t prove
that this (or any) universal proposition is true, because there are inϐinitely many examples,
and you can’t test them all.

Counterexample. A counterexample is an example that proves that a proposition is false.
A counterexample to “The sum of two integers is greater than either integer” is−1 + 2 = 1,
which is not larger than 2.

Algorithm. An algorithm is a set of mathematical instructions. An algorithm for
determining whether a number is even is the following: Divide the number by 2. If the
remainder is 0, the number is even. If the remainder is not 0, the number is not even.

Exercise 1.7. Prove that 0 is an even number.

Exercise 1.8. A number is odd if it equals 2n + 1, where n is an integer. Suppose that a student
wishes to prove that the sum of any two odd numbers is an even number. Explain why the following
is not a proof.

Proposition: The sum of any two odd numbers is an even number.
Proof. We can test odd numbers: 1 + 1 = 2, 1 + 3 = 4, 3 + 1 = 4, 1 + 5 = 6, etc. This also
works for negative odd numbers. For example,−1 + 3 = 2,−1 + (−3) = −4, and
−5 + 5 = 0. In each case, odd numbers sum to an even number. 2
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Exercise 1.9. Find a counterexample to the proposition “the product of any two odd numbers is an
even number.”

Exercise 1.10. Explain why the proposition “All music is made by musical instruments or voices” is
false.

Exercise 1.11. Explain why many examples don’t prove that a universal proposition is true, but one
counterexample disproves a universal proposition.

Solutions to exercises

Solution1.7. Proof. Since 0 = 2 · 0 and 0 is an integer, 0 is even by the deϐinition of even. 2

Solution1.8. The student has not tested all odd numbers. That would be impossible because there
are inϐinitely many odd numbers. A logical argument must be used, such as the proof on page 1–9.

Solution1.9. A counterexample is 5 · 3 = 15, because 5 and 3 are odd and 15 is also odd.

Solution1.10. You need to ϐind a counterexample—that is, some music that is not made by musical
instruments or voices. Two counterexamples are music using found sounds and algorithmic music
made by a computer.

Solution1.11. In the case of a true universal proposition, there are inϐinitely many examples to test,
and testing some of them does not prove that they are all true. Therefore, the rules of logic must be
used. In the case of a false universal proposition, demonstrating that it is false in one instance means
that the proposition is not universal and therefore is false.
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Math for Poets

. . .
But most by Numbers judge a Poet’s Song,
And smooth or rough, with them, is right or wrong;
. . .
These Equal Syllables alone require,
Tho’ oft the Ear the open Vowels tire,
While Expletives their feeble Aid do join,
And ten low Words oft creep in one dull Line,
. . .

—Alexander Pope, An Essay on Criticism (1709)

Numerical patterns have fascinated humans for millennia: numbers that are powers of
other numbers, squares that are sums of squares, numbers that form intriguing lists. This
is the story of one of the earliest studies of rhythm, an investigation that led ancient Indian
scholars to discover the mathematical patterns that Westerners know as the Fibonacci
numbers, Pascal’s triangle, and the binary counting system. Although our story initially
concerns rhythm in poetry, the Ancient Indians’ ability and fascination with exploring
rhythmic patterns also had a profound inϐluence on their music.

Meter as binary pattern

In English, a poetic rhythm, called a meter, is a pattern of stressed and unstressed syllables.
English poets use about a dozen different meters. Much poetry, including Shakespeare’s
plays, is written in iambic pentameter—ϐive pairs of alternating unstressed and stressed
syllables to a line. Alexander Pope’s 700+ line iambic pentameter poem An Essay on Criticism
(1709) is a good example. In the excerpt that begins this chapter, he ridicules critics who
judge poetry “by numbers”—that is, solely on how well a poet follows strict metrical rules.
While English poets use relatively few meters, there are hundreds of different meters
in Sanskrit, the classical language of India. Syllables in Sanskrit poetry are classiϐied by
duration (short or long) rather than stress. Any Sanskrit meter can be written as a binary
pattern—a pattern of any length formed by two symbols. For example, there are eight binary
patterns of length 3 that are formed from the letters L and S: LLL, SLL, LSL, SSL, LLS, SLS, LSS,
and SSS. These correspond with the eight three-syllable meters, using S for a short syllable

2–1



2–2 CHAPTER 2. MATH FOR POETS

and L for a long syllable.
Pingala is thought to be the ϐirst Indian scholar to study meter mathematically. He probably
lived in the last few centuries BC. As is typical in ancient Indian literature, Pingala’s writings
took the form of short, cryptic verses, or sūtras, which served as memory aids for a larger set
of concepts passed on orally. We are dependent on medieval commentators for transmission
and interpretation of Pingala’s writings.
Here are two of the questions that Pingala solved:

1. What is a reliable way to list all the meters with a given number of syllables?

2. How many meters have a given number of syllables?

Problem 1: listing meters. There are a number of ways to solve this problem. Pingala’s
solution would result in the one-syllable meters listed as
L
S
the two-syllable meters being listed as
LL
SL
LS
SS
and the three-syllable meters like this:
LLL
SLL
LSL
SSL
LLS
SLS
LSS
SSS

Here is how the four-syllable patterns would be listed:
LLLL
SLLL
LSLL
SSLL
LLSL
SLSL
LSSL
SSSL
LLLS
SLLS
LSLS
SSLS
LLSS
SLSS
LSSS
SSSS

Several patterns are observable in these lists. The ϐirst column alternates L and S, the second
alternates pairs of L’s and pairs of S’s, the third alternates four copies of the letters, and so on.
There is symmetry in the lists, in the sense that the ϐirst pattern is equivalent to the last with
the letters exchanged, and this is true for each pair of patterns that are at the same distance
from the beginning and end. In addition, there is a relationship between successive lists:
for example, the list of four-syllable meters is formed from the list of three-syllable meters
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by ϐirst adding L’s to the end of the list, then adding S’s. This last observation is useful for
describing an algorithm that will produce all meters of length n in the order that Pingala did.

Exercise 2.1. Write the list of ϐive-syllable meters.

Theorem 2.1 (Listing n-syllable meters). The list of one-syllable patterns is {L, S}. Suppose a
list of n-syllable patterns is formed from a nonrepeating list of all (n− 1)-syllable patterns by
adding L’s to the end of each (n− 1)-syllable pattern, followed by the list resulting from adding
S’s to the end of each (n− 1)-syllable pattern. Then each n-syllable pattern will occur exactly
once in the new list.

Proof. It is clear that each of the one-syllable meters (n = 1) is listed once. Suppose that the
algorithm results in each of the (n − 1)-syllable patterns being listed exactly once. Use the
algorithm to form a list of n-syllable patterns. Choose any n-syllable pattern. We want to
show that your chosen pattern occurs exactly once in the new list. If the pattern ends in an L,
then the algorithm shows that it appears exactly once in the ϐirst half of the list, because the
pattern of its ϐirst (n− 1) syllables appear exactly once in the list of (n− 1)-syllable patterns.
If it ends in an S, it appears exactly once in the second half of the list for the same reason. 2

The proof essentially says that if the one-syllable patterns are correct, then the two-syllable
patterns are correct, then the three-syllable patterns are correct, and so on, until your chosen
length is reached—sort of like a row of dominoes falling down. This type of reasoning is
called proof by induction. Although it may seem reasonable to argue this way, in fact, the
axiom of induction is required to allow it.

Problem 2: counting meters. How many meters have n syllables? Counting the patterns
on the lists I have typed, you see the numbers 2, 4, and 8, which are equal to 21, 22, and
23. You might conjecture that there are 16 (or 24) four-syllable meters, and, in general,
there are 2n n-syllable meters. This is correct. It follows so closely from the theorem that
mathematicians would called it a corollary, which is a theorem that may be proven from
another theorem without much effort.

Corollary 2.1 (Counting n-syllable meters). The number of n-syllable meters is 2n.

Exercise 2.2. How long is the list on which LLSSLSL appears?

Exercise 2.3. Assuming that the theorem has been proven true, explain why the corollary is true. You
don’t need to write a formal proof, but use complete sentences.

The binary number system Since there’s nothing special about the letters L and S, the
previous theorem and its corollary generalize to any set of binary patterns. For example,
there are 25 patterns of length 5 that are formed from the letters a and b. In some ways,
Pingala anticipated the development of the binary number system. The binary number
system is a base-two positional number system (our number system is a base-ten positional
system). It has two digits, 0 and 1, and its place values are powers of two—therefore,
every number is also a binary pattern. The decimal numbers 1, 2, 8, and 11 have binary
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1 beat 2 beats 3 beats 4 beats 5 beats
S L SS SL LS LL SLS SLL LLS

SSS SSL LSS LSL SSLS
SSSS SSSL SLSS

LSSS
SSSSS

Figure 2.1: Meters listed by duration

representation 1, 10, 1000, and 1011, respectively. The binary number system was not fully
described until Gottfried Leibniz did so in the seventeenth century.

Exercise 2.4. Suppose you ϐlip a coin three times and write down the binary pattern of heads and
tails, using H and T. The order of ϐlips makes a difference—that is HHT is different from HTH. How
many patterns of three coin ϐlips are there? List them and use your list to compute the likelihood of
getting tails exactly once if you ϐlip three times. Describe how you would list and count the patterns
for any number of coin ϐlips.

Exercise 2.5. Here are the binary numbers from 8 (1000 in binary) to 15 (1111 in binary):
1000
1001
1010
1011
1100
1101
1110
1111
How is this sequence related to the list of three-syllable meters? Conjecture how many
binary numbers have ϐive digits and list them. (Extra Credit: Learn more about the binary
number system and determine whether your answer is correct.)

The Hemachandra-Fibonacci numbers

The 12th-century writer Ācārya Hemachandra also studied poetic meter. A mora is the
durational unit of Sanskrit poetry; short syllables count as one mora and long syllables two
morae, which we’ll call “beats.” Instead of counting meters with a ϐixed number of syllables,
Hemachandra counted meters having a ϐixed duration. For example, here are the three
meters of three beats: SL, LS, and SSS. More meters are listed in Figure 2.1.

Exercise 2.6. Before you go on, count the number of meters for duration one through ϐive and make
a conjecture about the number of meters with six beats and the formula for ϐinding the number of
meters with any arbitrary number of beats. Try the worksheet for a more thorough exploration of the
problem.

Hemachandra noticed that each number in the sequence is the sum of the two previous
numbers. Since the ϐirst two numbers are 1 and 2, the numbers form the sequence
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all the (n− 2)× 1 patterns.

ending
those

in a
square domino

in a
ending
those

smaller piles:
Separate them into two

patterns in one big pile
Start with all the n× 1

(n− 1)× 1 patterns plus
You are left with all the

Remove the ϐinal blocks.

Figure 2.2: Hemachandra’s problem is equivalent to the “domino-square problem”: in how many ways can
1× 2 dominoes and 1× 1 squares tile a 1× n rectangle? Here is a visual demonstration that the nth number
in the sequence is the sum of the two preceding numbers.

1, 2, 3, 5, 8, 13 . . .. In other words, he discovered the “Fibonacci” numbers—about ϐifty years
before Fibonacci did.¹ Indian poets and drummers know these numbers as “Hemachandra
numbers.”
Theorem 2.2. The sequence of numbers of meters with n beats, beginning with n = 1, is the
Hemachandra sequence, 1, 2, 3, 5, 8, 13, . . .. When n > 2, each number in the sequence is the
sum of the two previous numbers.

Proof. Suppose H[n] represents the nth number in the sequence, which equals the total
number of patterns of duration n. Since there is one pattern (S) of duration 1,H[1] = 1, and
since there are two patterns (SS and L) of duration 2, H[2] = 2. When n > 2, partition the
collection of n-beat patterns into two sets: patterns of duration n − 2 followed by a long
syllable and patterns of duration n− 1 followed by a short syllable. The number of patterns
in the ϐirst set equalsH[n− 2], since they are formed by adding L to the patterns with n− 2
beats, and the number of patterns in the second set equalsH[n− 1], since they are formed by
adding S to the patternswith n−1 beats. The partition shows thatH[n] = H[n−1]+H[n−2]
when n > 2. Therefore, the list of numbers forms the Hemachandra sequence. 2

Figure 2.2 gives a visual demonstration in which short and long syllables are represented by
squares and dominoes, respectively. In the picture, n = 5, but the same argument may be
made for any n greater than 2.

Exercise 2.7. The procedure for writing the patterns with duration n as a combination of patterns of
durations n− 1 and n− 2 that is explained in the proof suggests how use the information in Figure 2.1
to list the 13 patterns with six beats. Write them.

Recursion. Recursion is a process in which one structure is embedded inside another
similar structure, rather like nesting Russian dolls, or the Droste cocoa box. Recursion is the

¹Fibonacci may have learned the sequence from the Indians. Fibonacci was educated in North Africa and
was familiar with Eastern mathematics. His Liber Abaci (1202), in which the sequence appears, introduced
the Indian positional number system—the system we use today—to the West. However, his description of the
number sequence as counting the sizes of successive generations of rabbits is not found in India.
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also bembe shango (Afro-Cuban)

lesnoto (Bulgaria)
bomba (Puerto Rico)

merengue bell part (Dominican Rep.)
cumbia bell part (Columbia)

mambo bell part (Cuba)

Rhythms of two- and three-beat notes

Rhythms of one- and two-beat notes

12-beat clave (Cuba)
guajira (Spain)

bintin bell pattern (Ghana)

Figure 2.3: Musical rhythms.

lifeblood of computer programming and is crucial in mathematics as well. An algorithm is a
recursive if you start with some information (called a base case) and arrive at all subsequent
information by repeatedly applying the same rule, called a recursive rule.
In the example of the Hemachandra numbers, there are two meters of one syllable each, L
and S. This is the base case. If you know all the meters that have n syllables, you can list the
meters that have n + 1 syllables by ϐirst adding an L to the beginning of the meters with
n syllables, then adding an S to the beginning of the meters with n syllables. This is the
recursive rule that is expressed by the formulaH[n] = H[n− 1] +H[n− 2].²

The Padovan sequence. The poetic meters that Pingala and Hemachandra studied have
an analogue in music. Music from India, the Middle East, and the Balkans is often written
in additive meter—that is, a rhythmic organization founded in grouping beats rather than
subdividing larger units of time called measures, which is the typical structure of Western
European music.
Figure 2.3 shows a few examples. The Bulgarian dance called Daichovo horo has a nine-beat
measure, grouped 2+2+2+3. Thismeans that the ϐirst, third, ϐifth, and seventh beats normally
receive an accent; they are also the beats on which the dancers step. The jazz pianist and
composer Dave Brubeck (1920-2012) used the same rhythm in his “Blue Rondo à la Turk”
(1959). A Gankino horo has an eleven-beat measure, with beats grouped 2+2+3+2+2.
Many additivemeters are binary patterns formed of two- and three-beat groupings. Pingala’s
algorithm will list all additive meters formed of n groups of beats for any n. However,
musical patterns are typically classiϐied by their number of beats. In this situation, we need
something like Hemachandra’s sequence for counting meters of a given duration, as explored
in the following exercise:

Exercise 2.8. This problem is explored in a worksheet. The Hemachandra numbers count meters
formed from one- and two-beat groups. What sequence counts meters consisting of two- and

²If the notation H[n], H[n − 1], etc. is unfamiliar, it’s worth taking time to understand it. Since H[n] refers
to the nth number in the sequence,H[n− 1] is the (n− 1)th number—that is, the number precedingH[n]. The
equationH[n] = H[n−1]+H[n−2]means “the nth number is the sum of the number that is one place before it
and the number that is twoplaces before it.” For example, ifn = 5, thenH[5] = H[5−1]+H[5−2] = H[4]+H[3].
In words, the ϐifth number is the sum of the fourth number and the third number. Note thatH[5− 1] ̸= H[5]− 1
becauseH[5− 1] = H[4] = 5, whileH[5]− 1 = 8− 1 = 7.
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three-beat groups? Find the ϐirst few numbers in the sequence—the base case—and a recursive rule
that generates the sequence. Explain why your rule is correct. This number sequence is called the
Padovan sequence and has a rich history. Discuss. (The On-Line Encyclopedia of Integer Sequences is
a wonderful research tool for this sort of problem.)

The expanding mountain of jewels

Before reading this section, I recommend trying the worksheet.
Pingala is credited with the discovery of “Pascal’s” Triangle in India, which he called the
meruprastāra, or “the expanding mountain of jewels.” Mount Meru is a mythical mountain
made of gold and precious stones. The nth row in this triangle counts the number of
unordered combinations of n syllables: taking all n, taking (n− 1), taking (n− 2), and so on,
where each syllable is considered different, rather than just long or short.
Here is how to compute the third row in the meruprastāra. There is one way of choosing
all three syllables from the word “prastāra” (that is, pras+tā+ra), there are three ways of
choosing two syllables (pras+tā, pras+ra, tā+ra), and there are three ways of choosing one
syllable (pras, tā, ra). In order to complete the third row, note that there is one way to choose
no syllables. Therefore, the third row is 1 3 3 1.
When each list counting combinations of r syllables drawn from sets of n syllables is written
in a row, and the rows are stacked, the numbers form a triangular array that extends forever:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

Pingala recognized that each interior number is the sum of the two numbers above it. This
array is known in the West as Pascal’s triangle—though, of course, it wasn’t yet named for
Pascal, who was born in France in 1623. This triangle has long been recognized all over the
world. Figure 2.4 shows three familiar images.

Exercise 2.9. Bhatt discovered the meruprastāra in a different context: he found the number of
meters of n syllables having r short syllables. This is the problem that was solved in Worksheet ??.
The fact that the two problems produce the same triangle is, of course, no coincidence. Find an exact
correspondence between the number of combinations of r objects drawn from a set of n different
objects and the number of meters of n syllables having r short syllables.

Recursion and the meruprastāra The ϐirst row of the meruprastāra contains the
numbers 1, 1. This is the base case. If you know any row in the meruprastāra, each number
in the following row equals the number directly above it plus the number diagonally above
and to the left (if there is no number in these positions, add zero). This is the recursive rule.
The 12th-century writer Bhaskara gives another recursive algorithm for ϐinding the numbers
in the meruprastāra in his work Lilavati. To ϐind the nth row in the meruprastāra, start by

http://www.research.att.com/~njas/sequences/
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Figure 2.4: The meruprastāra from North Africa (c.1150) to China (1303) to Germany (1527)

writing the numbers 1, 2, . . ., n, and above them write the numbers n, n− 1, . . ., 2, 1, like so
(shown for n = 5):

5 4 3 2 1
1 2 3 4 5

The ϐirst number in the row is 1 (this is true for every n). Obtain the other numbers in the
row by successively multiplying and dividing by the numbers you have written:

5

1
= 5; 5 · 4

2
= 10; 10 · 3

3
= 10; 10 · 2

4
= 5; 5 · 1

5
= 1.

This tells us that the ϐifth row is

1 5 10 10 5 1

The numbers in row n are built up recursively, one from the next, starting from 1 (the base
case).

Exercise 2.10. Find the sixth row of the meruprastāra using Bhaskara’s method. Check your work
using the addition algorithm, starting with the ϐifth row.

Patterns in music and architecture

Indian scholars had a great enthusiasm for solving mathematical problems related to poetry.
However, the situation of pattern in Indian music tells a more remarkable story. There,
the list of patterns has transcended its role as a “dictionary” of available patterns and has
become itself an interesting and valuable musical structure. In music, “prastāra”—meaning
systematic permutation of rhythmic elements—is commonly recognized as a principal part
of the process of rhythmic variation. Indian musicians typically use prastāra towards the
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Theme Dhi ne Ta ge Dhi ne Ta ge
ta ke ta ge Dhi ne Ta ke
ta ge Dhi ne Ta ge te te
ghi de na ge Tin na Ta ke

Variation I. (ta ge Dhi ne Ta ke) (ta ge
6+8+6+6+6 Dhi ne Ta ke ta ke) (ta ge

Dhi ne Ta ke) (ta ge Dhi ne
Ta ke) (ta ge Tin ne Ta ke)

Variation II. |: (ta ge Dhi ne Ta ke) (ta ge
6+6+4+6+6+4 Dhi ne Ta ge) (Dhi ne ta ke) :|
Variation III. |: (ta ge Dhi ne Ta ge) (Dhi ne
6+4+6+6+4+6 Ta ke) (ta ge Dhi ne ta ke) :|
Variation IV. |: (ta ge Dhi ne Ta ke ta ke
10+6+10+6 ta ke) (ta ge Dhi ne Ta ke) :|
Variation V. |: ta ke ta ke) (ta ge Dhi ne
4+6+10+6+6 Ta ke) (ta ge Dhi ne Ta ke :|
Variation VI. |: (ta ge Dhi ne Ta ke) (ta ge
6+10+6+10 Dhi ne Ta ke ta ke ta ke) :|
Variation VII. (ta ge Dhi ne Ta ke) (ta ge
6+6+6+8+6 Dhi ne Ta ke) (ta ge Dhi ne

Ta ke) (ta ge Dhi ne Ta ke
ta ke) (ta ge Dhi ne Ta ke)

Figure 2.5: Theme and variations for tabla, as taught by Lenny Seidman. Syllables such as “Dhi” and “ne”
indicate particular ways of hitting the drums’ heads to produce sounds. Each syllable occupies the same
amount of time. The symbols |: and :| indicate repeats and parentheses enclose phrases.

end of a piece, since progression through all the permutations of a rhythmic pattern is a
process that has a deϐinite ending—that is, when all the possibilities have been exhausted.
Lewis Rowell’s description of prastāra in early Indian music is also applicable today:

Once again we can draw an important formal conclusion from the popularity of
prastāra: endings are to be signaled well in advance by the onset of some
systematic musical process, a process of playful exploitation that can be followed
along a course of progressively narrowed and focused expectations and that
leads inexorably to a predictable conclusion. […] But prastāra has symbolic
overtones that transcend its local role as a simple tactic of closure: the device
mimics the series of transformations through which all substance must
eventually pass [?, p. 251].

Figure 2.5 demonstrates the use of permutation in a simple composition for tabla (Indian
drums). Each variation on the theme is a permutation of groups of 4, 6, 8, and 10 beats:

I. II. III. IV. V. VI. VII.
6 8 6 6 6 6 6 4 6 6 4 6 4 6 6 4 6 10 6 10 (6 4) 6 10 6 6 6 10 6 10 6 6 6 8 6

Variations II and III state two of the three permutations of {6, 6, 4}, with 4+6+6 missing.
Variations IV, V, and VI exhaust the permutations of the 10- and 6-beat phrases (note that
variation V begins with the last four beats of the 10-beat phrase combining with the last 6
beats of variation VI to form the 10-beat phrase). Finally, variation VII, a mirror image of I,
signals that the permutation process has come to a close.
As Rowell points out, we can also understand prastāra as manifesting a fascination with
recursive generation and transformation that appears in Indian art, architecture, and
religion from ancient times. The medieval Śekharī (“multi-spired”) temples of western
and central India gave form to the view that the cosmos was recursively generated. The
eleventh-century Kandāriyā Mahādeva temple (Figure 2.6) is a celebrated example of this
style; it is composed of miniature shrines (aedicules) emanating from a central shrine. Adam
Hardy writes,
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Figure 2.6: Recursion in Indian architecture: the eleventh century Kandāriyā Mahādeva temple [?].
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Orissa, ca. Io030 

Fig. I5 Cumulative projection: 
a. Latina 

b. Type I (Latina as central projection) 
c. Type I as central projection, as 

at Rijarani temple, Bhubaneshwar 

d. Late composition with "c" as central 

projection, as in Figure 4I 

L. b. d. 

Figure 2.7: Śekharī temple construction. ©2002 Adam Hardy

1 1
1 1+1 1

1 2+1 1+2 1
1 3+1 3+3 1+3 1

1 4+1 6+4 4+6 1+4 1
Figure 2.8: The meruprastāra is made of copies of itself.

As soon as the dynamic relationships between the aedicules are considered, the
vision of a theological hierarchy can be seen as a dynamic process of
manifestation: the emerging, expanding, proliferating, fragmenting, dissolving
patterns are so closely analogous to the concept, perennial in India, of a world of
multiplicity recurrently manifesting from unity and dissolving back into unity,
that the idea can be said to be embodied in the forms [?, p. 91-2].

It is no wonder that ancient and medieval Indian mathematicians developed an outstanding
facility with recursion.
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Solutions to exercises

Solution2.1. I’ve written the list in two columns to save space.
LLLLL
SLLLL
LSLLL
SSLLL
LLSLL
SLSLL
LSSLL
SSSLL
LLLSL
SLLSL
LSLSL
SSLSL
LLSSL
SLSSL
LSSSL
SSSSL

LLLLS
SLLLS
LSLLS
SSLLS
LLSLS
SLSLS
LSSLS
SSSLS
LLLSS
SLLSS
LSLSS
SSLSS
LLSSS
SLSSS
LSSSS
SSSSS

Solution2.2. Since LLSLSL has seven syllables, the list has 27 = 128meters.

Solution2.3. Pingala’s algorithmmeans that each list is twice the size of the previous one (formally, if
there are k (n− 1)-syllable meters, there are (2× k) n-syllable meters. Since there are 2 one-syllable
patterns, the numbers of meters of each length follows the pattern 2, 4, 8, 16, and so on.

Solution2.4. Since patterns of H and T are binary, there are 23 = 8 patterns, and they are HHH THH
HTH TTH HHT THT HTT TTT
Each of these patterns is equally likely, and three of them have one T and two H’s, so the likelihood of
getting one T is 3/8 or 37.5%. In general, use the results from the study of meters, substituting H for
L and T for S.

Solution2.5. Start with 1, then use the list of three-syllable patterns, replacing 0 with L, 1 with S,
and writing the patterns backwards. There are 24 = 16 ϐive-digit binary numbers. You write them
by following this same procedure with the list of four-syllable meters. Proving that this answer is
correct involves understanding how place-value number systems work in bases other than 10.

Solution2.6. If your conjecture was something like “there are 13 meters with 6 beats, and you get
any number in the sequence by adding the two previous,” you would be correct.

Solution2.7. The procedure is to add a L to all the 4-beat patterns, then add an S to all the 5-beat
patterns, which are listed in ϐigure 2.1. The answer is: LLL SSLL SLSL LSSL SSSSL SLLS LSLS SSSLS LLSS
LLSLS SLSSS LSSSS SSSSSS

Solution2.8. Here are the ϐirst ten entries of the Padovan sequence:

duration 1 2 3 4 5 6 7 8 9 10
num. patterns 0 1 1 1 2 2 3 4 5 7

If P [n] is the number of n-beat patterns, then a recursive rule is P [n] = P [n − 2] + P [n − 3]
when n > 3. The proof of this statement is similar to the proof of Theorem 2.2 (the Hemachandra
numbers). In this case, partition the patterns of duration n into patterns of duration n− 2 followed by
a two-beat note and patterns of duration n− 3 followed by a three-beat note. Incidentally, a student
noticed that P [n] = P [n− 1] +P [n− 5] (when n > 5) and conjectured that all Padovan numbers also
follow this rule. Is this correct? Hint: use the ϐirst rule to rewrite P [n − 1]. The Padovan sequence
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has some beautiful properties—for example, it is related to a spiral of equilateral triangles in the way
the Hemachandra-Fibonacci sequence is related to a spiral of squares (see below), and it is closely
connected to the Perrin sequence, another extremely cool sequence. See Ian Stewart’s “Tales of a
Neglected Number” (in Math Hysteria) for more examples.

4

21

13

8 5

32
11

2
2 1

3
1 1

21

9
12

7

16

5

Solution2.9. Any way of choosing objects from a collection of n different objects can be represented
by a binary pattern of length n in this way: assign numbers from 1 to n to the objects, and write I
(in) if an object is selected and O (out) if it is not. For example, suppose you choose {2, 5, 7} from
the collection {1, 2, . . . , 8}. That choice corresponds to the binary pattern OIOOIOIO. Each choice of
r objects corresponds to a pattern of n letters with r I’s. Substituting S for I and L for O produces a
n-syllable meter with r short syllables.

Solution2.10.

6 5 4 3 2 1
1 2 3 4 5 6

The ϐirst number in the row is 1 (this is true for every n). Obtain the other numbers in the row by
succesively multiplying and dividing by the numbers you have written:
6
1 = 6; 6 · 5

2 = 15; 15 · 4
3 = 20; 20 · 3

4 = 15; 15 · 2
5 = 6; 6 · 1

6 = 1. This tells us that the sixth row is
1 6 15 20 15 6 1.
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Chapter 3

Rhythm

The beat is the foundation of music. Even before birth, we hear the regular pulse of our
mothers’ heartbeats. We experience the beat as simultaneously linear (progressing through
time) and cyclic (repeating, as on a clock). Musical events—sounds and silences—occur
within a repeating framework called a meter. A rhythm is a pattern of note onsets that are
actually present in a piece. In traditional and popular music, repeated rhythmic patterns, or
time-lines, overlay the meter.

Measuring time

Watch the video “Tāla in Carnatic classical music.” In this video, the performer’s repeated
hand gestures indicate the tāla, or repeating rhythmic organization of time in the piece.
These same gestures accompany any piece using this tāla. Compare also the hand gestures
used in Western classical conducting (Figure 3.1).
The tactus is the basic pulse of a piece of music—it’s where you naturally tap your foot. In
music with a regular rhythm, each pulse, or beat, has the same length. When tapping along
with the tactus, we normally expect some musical “event” to happen at every beat we tap.
Normally this event is something we can hear (a drum hit, or the beginning of a note) but
sometimes there is a silence—a rest. The tempo, or speed, of the tactus is measured in
beats per minute. Tempos of about 120 beats per minute are typical for pop songs, while
a comfortable walking tempo is around 100 beats per minute. A metronome is a simple
mechanical or digital instrument that can play beats at a chosen tempo.
Beats in the tactus are grouped into units called measures, or bars, just as seconds are
grouped into minutes. Beats may also be subdivided into smaller units of time. In Western
classical and popular music, divisions into two, three, or four equal parts are common. This
diagram shows a four-beat measure with beats subdivided into two or four parts. The “&”
should be read as “and.” Practice clapping at a constant rate on the numbered beats and
repeat each line of the drill several times along with your claps. Then practice three-beat
measures, using the patterns 123, 1&2&3&, and 1e&a2e&a3e&a.
In some pieces, there are intermediate levels of grouping between the measure and the
tactus and, in addition, higher-level groupings of measures. In Western music notation,
the time signature indicates the internal structure of the measure. For example, the time

3–1
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Figure 3.1: Curwen’s conducting diagrams.

1 2 3 4
1 & 2 & 3 & 4 &
1 e & a 2 e & a 3 e & a 4 e & a

Figure 3.2: Duple and quadruple subdivisions of a four-beat measure.

signature 12/8 is normally played as four beats per measure, each subdivided into three
parts. H.W. Day’s “Tree of Time” (Figure 3.4) is a fanciful representation of time signatures.

Exercise 3.1. Practice clapping to three songs written: “Respect,” by Otis Redding (1965; made
famous by Aretha Franklin), the Beatles’ “Norwegian Wood” (1965), and Sister Rosetta Tharpe’s
“That’s All” (1939). First, ϐind the tactus. It should be where you naturally step when you’re dancing.
Are beats in the tactus grouped any particular way, such as into groups of two, three, or four? Can
those groups be grouped into larger groups? Next, try dividing each beat in the tactus into two
subdivisions. If that doesn’t seem to work, try three subdivisions. Describe the rhythmic structure of
the piece.

Rhythm and groove

Groove is a difϐicult term to deϐine. Most musicians agree that groove is essential to most
styles of popular music. It normally refers to characteristic repeating rhythm patterns
and accents that identify different styles of dance music, such as ska and reggae. Listen to
the audio, starting around 3:00, in which James Brown, “The Godfather of Soul,” discusses
grooves in his music in this 2005 interview with Terry Gross of NPR. He compares two
versions of the “I Got You” groove and describes how his groove changed with his 1965 song
“Papa’s Got A Brand New Bag.”
The ϐirst count in every measure is called the downbeat and the last count is called the
upbeat, because it comes right before the downbeat of the next measure. The most basic
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1 2 3 4
1 e a 2 e a 3 e a 4 e a

Figure 3.3: Triple subdivisions of a four-beat measure.

Figure 3.4: A fanciful representation of meter in Western classical music.

grooves in Western music use four-count measures. Counts one and three are called the
on-beats and counts two and four are the off-beats. “Backbeat” grooves, popular in blues and
R&B, emphasize the off-beats, while downbeat-oriented grooves have a primary accent on
the downbeat and a secondary accent on count three. In the NPR interview, James Brown
said that “Papa’s Got a Brand New Bag” was his ϐirst song to give a strong emphasis to the
downbeat.
Unlike the basic grouping of pulses in the tactus into measures, a groove can be highly
complex, with several musicians playing interlocking rhythms, each with different accent
patterns. A hip-hop beat is an example of what I’m calling a groove. We can study both the
pattern that each instrument plays and the combination of all these patterns. In addition,
musicians sometimes intentionally play a little ahead or behind the tactus—this kind of
variation is called microtiming or swing. Although microtiming is an important feature of
dance music grooves, it is difϐicult to write down in music notation. Musicians normally
learn it by ear. Just to keep things simple, we won’t be studying microtiming in this class, but
it is an important part of groove in a lot of music.

Exercise 3.2. Practice both on-beat and off-beat clapping with different kinds of dance music. Find a
piece that clearly emphasizes the on-beats and another piece that clearly emphasizes the off-beats.
Do you prefer to clap to “Papa’s Got a Brand New Bag” on the on-beats, or on the off-beats?

Notation

Drum tablature, or drum tab, is a common way to notate rhythm. Sequences of drum hits can
be written with x’s, indicating hits, and .’s (periods), or rests, indicating that the drum is



3–4 CHAPTER 3. RHYTHM

not sounded. Each symbol occupies the same amount of time, a pulse in either the tactus or
some regular subdivision of the tactus. For example, the notation x..x..x.means “hit rest
rest hit rest rest hit rest.” This is a common pattern in music with four counts to a measure,
subdivided once. Practice clapping the pattern while you speak the names of the counts:
Count: 1 & 2 & 3 & 4 &

Clap: x . . x . . x .

Exercise 3.3. Write the pattern for a four-count measure, with hits (a) on the downbeat only (b) on
the upbeat only (c) on the on-beats, and (d) on the off-beats. Each x or . occupies one count.

Exercise 3.4. How many patterns of hits and rests are possible in an eight-beat measure? Of those,
how many have three hits? (Don’t try to do this from scratch—use the results of the last chapter!)

Steve Reich’s “Clapping Music.” We can use drum tab to visualize Steve Reich’s “Clapping
Music.” Player A claps the same rhythm over and over until the piece ends.
Player A: x x x . x x . x . x x .

Player B progresses through a number of patterns, playing each one eight times. The ϐirst
pattern is the same as Player A’s, then the pattern is repeatedly shifted by one beat, so that,
for example, xx.xx.x.xx.x is the next pattern.
When two drum patterns are played simultaneously, a third rhythm is heard, called the
resultant rhythm. It is the rhythm that has rests whenever both of the original drum patterns
had a rest and drum hits otherwise.
Drum tab is convenient for ϐinding resultant rhythms. Any beat that has an x in either A
or B (or both) has an x in the resultant rhythm. Here are patterns A and B in the previous
example, plus the resultant rhythm. The seventh beat is the only rest in the resultant rhythm.
Player A: x x x . x x . x . x x .

Player B: x . x x . x . x x . x x

resultant: x x x x x x . x x x x x

Led Zeppelin’s “Kashmir” Here is the Kashmir pattern. The drums are hit on the
indicated counts.
Count: 1 & 2 & 3 & 4 & |1 & 2 & 3 & 4 & |1 & 2 & 3 & 4 & |1 & etc.
Guitar: xxx...xxx...xxx.|..xxx...xxx...xx|x...xxx...xxx...|xxx. etc.

Exercise 3.5. Explain why the overall pattern, including both drum and guitar, repeats after three
measures.

Circular notation.

Because grooves repeat, it sometimes makes sense to visualize patterns on a circle, just as
we visualize hours on a clock. The downbeat goes at the top and the other beats proceed
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1 432

Figure 3.5: The ϔirst four patterns in “Clapping Music” that are clapped by player B.

clockwise. Dots show when the drum is hit. Figure 3.5 shows some of the patterns from
“Clapping Music.”

“Scientiϐic” time.

In music, time is of the essence. How should we measure it? Rather than using minutes or
seconds, we’ll use a unit of time that is relevant to the piece itself. Since the tactus is often
subdivided, using the tactus as a “ruler” to measure time would mean using a lot of fractions.
To avoid this, let’s measure time using the smallest level of subdivision, called the tatum, in
honor of the great African-American jazz pianist Art Tatum. Think of a tatum as the musical
version of an atom. In music notation, the tatum might be a pulse of eighth or sixteenth
notes. Each pulse in the tactus lasts a whole number of tatums.
The fact that a tatum, like an hour or a minute, is a measure of time—not a speciϐic point in
time—means that we can measure musical time starting at zero, just like a ruler starts at
zero, so that “time 0,” or t0, refers to the beginning of the ϐirst measure and “time a,” or ta,
refers to the time a tatums later. The ϐirst beat is the beat whose onset is at t0.¹
Any pattern of hits corresponds to a pattern of time intervals (durations) that measure the
time from the onset of one hit to the next. For example, the pattern x..x..x.x..x..x.
is described as “3+3+2+3+3+2” and shown in Figure 3.6. The onsets in the pattern start at
t0, t3, t6, t8, t11, and t14.
The multiple levels of counting in Figure 3.6 give some idea of the complexity of musical
time. The tatum is, here, twice as fast as the tactus. If the tatum and the tactus are the same
length, I’ll just refer to “the beat” rather than distinguishing between levels of subdivision.

0 7654321 8 1514131211109 16

1 21432 43 && & & & & & &

tatum

count

Figure 3.6: Two repeats of the pattern x..x..x.

¹An analogy is that the ϐirst hour after midnight is the hour between 0:00 and 1:00, in a 24-hour clock.
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The beat class circle and modulus

When we translate between the beat and the measure, certain points in time are associated
with one another. Just as a clock represents the organization of time within a day, the beat
class circle represents time in a musical measure. Figure 3.7 shows a repeated rhythm
pattern, called a timeline, on a beat class circle with eight beats. The blobs indicate which
time points are attacks.

0
7

6

5
4

3

2

1

Figure 3.7: The timeline x..x..x. represented on the beat class circle.

Deϐinition 3.1 (Beat class). Suppose there are n beats per measure and a is one of the
numbers {0, 1, 2, . . . , (n− 1)}. Then beat class a (bca) equals the set of all time points that are
a beats after the start of some measure.

A measure with n tatums has n beat classes,

bc0, bc1, bc2, . . . , bc(n− 1)

Beat class bc0 consists of the onsets of all the downbeats (equivalently, you can think of bc0
as the vertical lines indicating the beginnings of measures).

Exercise 3.6. Write the rhythms in Figure 2.3 (see page 2–6) in drum tab and circular notation and
write the set of beat classes in which their onsets fall.
Suppose you start at the beginning of a measure and there are 12 beats per measure. What is
the beat class at time t54? Since moving backward 12 beats has no effect on the position in
themeasure, we start by subtracting as many 12s as we can, then looking at what’s left. Since
54− 12− 12− 12− 12 = 6, beat 54 is in beat class 6. It occurs 6 beats after the beginning of
a measure. We can do this more efϐiciently using remainders: 6 is the remainder when 54 is
divided by 12.
In general, suppose there are n beats in a measure. Time point ta falls in beat classR, where
R is the remainder when a is divided by n. Mathematicians call this remainder the modulus.

Deϐinition 3.2 (Modulus). If a is an integer and n is a positive integer, then the modulus of a
relative to n is the remainder when a is divided by n. IfR is the remainder, we write

a mod n = R

Theorem 3.1 (Beat class equals modulus). If there are n beats per measure, time point ta
belongs to beat class a mod n.
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Two time points belong to the same beat class if and only if they are in the same position in
the measure, which is the same thing as being separated by a whole number of measures.
Mathematicians call this relationship modular congruence:
Deϐinition 3.3 (Modular congruence). Two numbers a and b are congruent modulo a positive
integer n if

a mod n = b mod n

If a and b are congruent, we write a ≡ b (mod n).

The triple equals sign ≡ is read as “is congruent to.” For example 23 ≡ 51 (mod 7) because
the remainder when either 23 or 51 is divided by 7 equals 2. That is, 23 mod 7 = 51 mod 7.
The following theorem shows an alternate formula used to determine modular congruence.
Theorem 3.2. If a and b are integers and n is a positive integer, then a ≡ b (mod n) if and
only if (a− b) is divisible by n; that is, (a− b)/n is an integer.

For example, 23 ≡ 51 (mod 7) because (51− 23)/7 = 28/7 = 4, which is an integer.
Theorem 3.3 (The beat class theorem). Suppose there are n beats in a measure. Time points
ta and tb lie in the same beat class if and only if

a ≡ b (mod n)

which occurs if and only if (a− b)/n is an integer.

For example, suppose there are seven beats to a measure. Then

• Beat class 0 corresponds to the onset of downbeats, which begin at t0, t7, t14, t21 ….
• Time t100 falls on beat class 2 because 100÷ 7 = 14r.2.
• Time t28 falls on beat class 0 because 28 is divisible by 7 (28÷ 7 = 4r.0).
• Times t100 and t849 belong to the same beat class because they are separated by
849− 100 = 749 beats, which equals exactly 749/7 = 107measures. Equivalently, use
modular congruence and the beat class theorem: 100 ≡ 849 (mod 7) because
(100− 849)/7 is an integer. Another way to solve the problem is to use modulus: t100
is in bc 2 (see above) and, since 849÷ 7 = 121r.2, t849 is also in bc 2.

Exercise 3.7. Evaluate (a) 144 mod 13 and (b) 169 mod 13.
Determine whether the equations are true:
(c) 25 ≡ 61 (mod 6)
(d)−4 ≡ 4 (mod 3).

Exercise 3.8. Suppose there are six beats to the measure. Which time points are downbeats? To
which beat class does time t50 belong? Time t90? Are time points 36 and 63 in the same beat class?

Exercise 3.9. Suppose there are four beats per measure and you clap on every third beat, starting
at the beginning of a measure. Find the sequence of beat classes on which your claps fall. Practice
counting in four and clapping every third beat.
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Solution3.3. (a) x... (b) ...x (c) x.x. (d) .x.x

Solution3.4. Hits and rests are binary patterns, and the number of binary patterns of length n is 2n.
Therefore, there are 28 = 256 patterns. The eighth row of Pascal’s triangle tells us that there are 56
eight-beat patterns that have three hits and ϐive rests.

Solution3.5. The drum pattern repeats every measure (eight beats) and the guitar pattern repeats
every three beats. The entire pattern repeats after lcm(8, 3) = 24 beats, which equal three measures.

Solution3.6. In general, a duration of one is written “x”; two is written “x.”, and three is written
“x..”. For example, the guajira is x..x..x.x.x. (this is the rhythm of “America” in West Side
Story). The onsets fall on beat classes 0, 3, 6, 8, and 10.

Solution3.7. (a) 144 mod 13 = 1 because 144 ÷ 13 = 11r.1 and (b) 169 mod 13 = 0 because
169÷ 13 = 13 (remainder is 0). Determine whether the equations are true:
(a) 25 ≡ 61 (mod 6) because (25− 61)/6 = 6, which is an integer.
(b)−4 ̸≡ 4 (mod 3) because (−4− 4)/3 = −8/3 is not an integer.

Solution3.8. The downbeats occur at time points 0, 6, 12, 18, etc. Time 50 is in beat class 2 because
50÷ 6 = 8r.2. Time 90 is in beat class 0 because 90÷ 6 = 15r.0.

Solution3.9. You clap on beat classes
0 mod 4 = 0
3 mod 4 = 3
(3 + 3) mod 4 = 2
(2 + 3) mod 4 = 1
(1 + 3) mod 4 = 0, etc.
So you clap on beats 0, 3, 2, 1, 0, 3, 2, 1, …

Polyrhythm andmaximally even rhythms

I’ve presented the m-against-n rhythm as one person counting in cycles of m beats and
the other person counting in cycles of n beats. We saw that a m-against-n pattern repeats
after lcm(m,n) beats. What more normally happens is that a musician plays a repeating
pattern whose cycle length is not a divisor or multiple of the number of beats in a measure,
while, at the same time, keeping track of the underlying meter. An example is the Kashmir
pattern, which has three beats, where there are eight beats per measure. Eight repeats equal
twenty-four beats and ϐill a whole number of measures. This is expressed mathematically
as (3 · 8) mod 8 = 0. Note that 24 = lcm(3, 8). This 3-against-8 rhythm is an example of a
polyrhythm.
Deϐinition 3.4. Suppose n andm are positive integers. Am-against-n polyrhythm is either the
result of repeating a pattern of length n beats simultaneously with a pattern (or measure) of
lengthm beats.

In general, assuming that n and p are positive, repeating a pattern whose duration is p beats
r times takes rp beats. This equals a whole number of n-beat patterns or measures if

rp mod n = 0
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